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A generalization of the isotropic theory of Batchelor & Proudman (1954) is developed 
to estimate the effect of sudden but arbitrary three-dimensional distortion on homo- 
geneous, initially axisymmetric turbulence. The energy changes due to distortion are 
expressed in terms of the Fourier coefficients of an expansion in zonal harmonics of the 
two independent scalar functions that describe the axisymmetric spectral tensor. 
However, for two special but non-trivial forms of this tensor, which represent possibly 
the simplest kinds of non-isotropic turbulence and specify the angular distribution but 
not the wavenumber dependence, the energy ratios have been determined in closed 
form. The deviation of the ratio from its isotropic value is the product of a factor con- 
taining R, the initial value of the ratio of the longitudinal to the transverse energy 
component, and another factor depending only on the geometry of the distortion. It is 
found that, in axisymmetric and large two-dimensional contractions, the isotropic 
theory gives nearly the correct longitudinal energy, but (when R > 1) over-estimates 
the increase in the transverse energy; the product of the two intensities varies little 
unless the distortion is very large, thus accounting for the stress-freezing observed in 
rapidly accelerated shear flows. 

Comparisons with available experimental data for the spectra and for the energy 
ratios show reasonable agreement. The different ansatzes predict results in broad 
qualitative agreement with a simple strategem suggested by Reynolds & Tucker 
(1975), but the quantitative differences are not always negligible. 

1. Introduction 
The response of turbulence to a suddenly imposed strain has been a question of long- 

standing interest, because it appears in a variety of practical problems and seems to be 
amenable to analyses in which viscous and nonlinear inertial forces play a secondary 
role. The first investigations date back to Prandtl (1933) and Taylor (1935), both of 
whom were interested in studying the passage of turbulence through a wind-tunnel 
contraction. A formal analysis of the problem, recognizing the spatial and temporal 
randomness of turbulence (which had been ignored by both Prandtl and Taylor) but 
assuming it to be (initially) isotropic, was made by Ribner & Tucker (1953) for axi- 
symmetric contractions and independently by Batchelor & Proudman (1954) for 
arbitrary distortions; the latter paper (to be referred to below as BP) gives a definitive 
and particularly complete account of the solution. The conditions under which the 
distortion can be considered sufficiently rapid for the nonlinear and viscous effects to 
be negligible have recently been closely re-examined by Hunt (1973), who finds that 
they are generally less stringent than BP suggested. 

t Present address : Department of Mechanical Engineering, University of Newcastle, New 
South Wales, Australia 2308. 
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The results of BP are however limited by the assumption of isotropy, which is rarely 
(if ever) found in practice. On the other hand, situations involving non-isotropic and 
even inhomogeneous turbulence in which rapid distortion appears to be the dominant 
mechanism have multiplied. In many rapidly accelerated shear flows, for example, it 
has been shown that the Reynolds shear stress freezes and the turbulent structure 
responds largely as in rapid distortion (Narasimha & Prabhu 1972; Narasimha & 
Sreenivasan 1973; Ramjee, Badri Narayanan & Narasimha 1972). Hunt (1973), Hunt 
& Mulhearn (1973) and Bearman (1972) have shown the importance of the rapid- 
distortion limit in wind flow past buildings and in pollutant dispersion. It therefore 
appears necessary and useful to analyse the effect of rapid distortion on more general 
types of turbulence. The present paper considers homogeneous but (initially) axi- 
symmetric turbulence; the effects of inhomogeneity will be treated elsewhere (see 
Sreenivasan & Narasimha (1974) for a preliminary account). Axisymmetric turbulence 
is fairly common, particularly in wind-tunnel streams and in the atomsphere. Approxi- 
mations to axisymmetry are also found (as we shall argue elsewhere) in some limited 
regions of free shear layers (wakes, jets) and in the outer part of a turbulent boundary 
layer. 

In  isotropic turbulence, the spectral tensor is determined completely in terms of a 
single scalar function of a single scalar variable; e.g. the energy spectrum function 
E ( k )  of Batchelor (1953, p. 36). Furthermore (see BP), the ratio of turbulent energy 
after distortion to that before does not depend on the precise form of E ( k ) .  In  axi- 
symmetric turbulence, on the other hand, kinematic arguments (e.g. Batchelor 1953, 
p. 43) show that the spectral tensor could in general involve two independent func- 
tions of two scalar variables. (These variables can be taken as k and k,lk = cos 8, where 
k is the magnitude of the wavenumber vector k and k, is the component of k along the 
axis of symmetry.) A complete analysis of the axisymmetric problem is impossible 
without some knowledge of the dependence of these functions on 8. Direct measure- 
ments of spectra are invariably one-dimensional, and provide information usually 
only on the planes k, = constant in k space; transverse correlations similarly describe 
(after taking an appropriate Fourier transform) the plane k, = constant. Experimental 
data on these quantities are not sufficiently detailed to allow us to infer the two func- 
tions referred to above, although partial checks are possible and %ill later be made. 

We proceed here by representing the axisymmetric spectral functions as suitable 
expansions involving Legendre polynomials in cos 8. If such an expansion for the initial 
spectrum function is known, the energy ratios for arbitrary distortion can be com- 
pletely determined; they can in particular be expressed as sums of the known isotropic 
results (from BP) and appropriate correction terms for departure from isotropy. 
However, in those cases where certain functions contained in the spectral tensor may 
be assumed to depend only on the wavenumber magnitude k, the correction terms no 
longer depend on the details of the spectral function, but only on the ratio R of the 
longitudinal energy component to either of the other two in the initial state. Two of the 
corresponding ' ansatzes ', which arise as special truncations of the general expansion, 
are studied here in the same detail as isotropic turbulence; in particular the results for 
the energy ratios are expressible in closed form, in elliptic integrals. A subclass of the 
first of these ansatzes, involving only a single scalar function of k, represents what is 
possibly the simplest model for non-iso tropic turbulence, and is pursued somewhat 
further. Comparison is made with the available experimental information in order to  
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examine the validity of the results based on these ansatzes and to assess the import- 
ance of the correction terms in common flow situations. 

Earlier work on the problem has been incomplete and, in some places, even incorrect. 
Acharya (1956) and Swamy (1972) both considered what is here called ansatz I1 (see 
$4.1). Acharya wrote down the expressions for the component energies for the special 
case of an axisymmetric contraction, in terms of integrals involving the appropriate 
scalar functions, but made no attempt to evaluate them. Swamy made further assump- 
tions (which are here found to be unnecessary) about the explicit forms of the scalar 
functions and numerically integrated Acharya’s expressions. However, an algebraic 
error in Acharya’s work, carried over by Swamy, vitiates the latter’s results for lateral 
energy at small distortions. The work reported hem is more general, and penetrates 
further than these studies. 

In a different approach to the problem, Reynolds & Tucker (1975) have proposed a 
‘simple stratagem ’ based on the realization that a given undistorted initially axi- 
symmetric turbulence may be considered to have resulted from the application of an 
appropriate axisymmetric strain to a phyothetical field of initially isotropic turbulence. 
The effect of the actual distortion on the axisymmetric field is then considered to be 
the same as that of an equal incremental distortion on the hypothetical isotropic field. 
The results of this ‘hypothetical strain’ method are compared with the present results 
in 55.4. 

Incidentally, a particular case of axisymmetric turbulence, similar in spirit to those 
studied here but different in detail, has been examined by Herring (1974) in connexion 
with the approach of axisymmetric turbulence to isotropy. The relation between these 
various types of axisymmetry is examined in 54.2. 

2. The spectral tensor in axisymmetric turbulence 
We call turbulence axisymmetric if the mean value of any product of fluctuating 

velocity components along given directions a t  a given set of points is invariant (i) to 
rigid-body rotations of the configurations of points and directions about a given unit 
vector a (along the axis of symmetry, say Ox,) and (ii) to reflexion of the configuration 
in any point. Thus there is an axis of symmetry but no preferred direction, and the 
spectral tensor must be even in the wavenumber component along the axis (see 
figure 1). 

The most general second-order spectral tensor for such axisymmetric turbulence is 
of the form (see, for example, Batchelor 1953, p. 43) 

&(k) = A ,  k$ kj + A ,  aiai + A3aij + Adai kj + A,aj ki (2.1 a )  

in Cartesian-tensor notation, where the A,  (r  = 1, . . . ,5 )  are functions, not all indepen- 
dent, of k and k .  a = k,. Continuity in incompressible flow requires q5ij to be orthogonal 
to k, and symmetry in the indices i a n d j  demands that A ,  and A ,  be equal. Equation 
(2.1 a)  can therefore be written as 

&(k) = (k ik j -k26 , j )A ,+[k~6 i j+k2a ia j -k , (a ,k j+a jk~) ]A , /k2 .  (2.171) 

Introducing 
G = -A,/k2, F = -A , -G ,  (2.2) 

17-2 
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1 x1 

FIauRE 1. Sketch defining notation. 

we can write the diagonal components of q5cj as 

q5ll(k) = (k2 - k2,) F(k, w, 

2 #ii(k) = 2k2F + (k2 -  kt) G. 

q5,Jk) = ( k 2 - k E ) F ( k , k l ) + ( k 2 - k ~ - k 2 , ) G ( k , k l ) ,  n = 2,3, 
and 

(2.3) 

Here and in the following, we do not follow the summation convention; the indices i and 
j can take the values 1 , 2  and 3 but n takes only the values 2 and 3. 

It is convenient to change the arguments of F and G from (k, k,) to (k, 6 = cos-lk,/k), 
and expand in zonal harmonics with the Legendre polynomials P,(cos~) as basis: 

i 

Because of the absence of a preferred direction as noted earlier, only even-order 
polynomials appear in the expansions. If (2.3) is integrated over wavenumber space in 
a spherical polar co-ordinate system, the dependence of the rest of the integrand (i.e. 
apart from F and G) on the polar angle involves no powers higher than sins 6. It follows, 
from the orthogonality of the Legendre polynomials, that only the first two terms in the 
expansion (2.4) can contribute to the energy; thus we get for the mean-square velocity 
components 

(Uf) = A ~ T ( ~ F O - F ~ ) ,  
(24:) = &r( lOF0 +F2 + 56, - G2), (2.5) 
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where m m 

0 0 
P2m = f F2m(k) k4dk, 8, = f G2,(k) k%%. 

60 1 

(2.6) 

In  isotropic turbulence F = Fo and G = 0. 

3. The general solution 
3.1. Post-distortion spectral tensor 

By following the procedure used by BP, it  is easy to show that in the present problem 
the diagonal components of the post-distortion spectral tensor (indicated by a prime) 
are given by 

G(k2-k4-k:) k2 
+ x4 [ele,(k2 - kq)2 + k? {-& el en + 2(k2 - k;))], (3.2) 

where xis the post-distortion wavenumber vector, with components xi = ki/ei, and e, is 
the extension ratio, obeying the mass conservation law e1e2e3 = 1 in incompressible 
flow. In  flow through a duct with mean velocity C$ along the axis xi, the distortion 
experienced by a fluid particle in a time t is 

(no sum over .i ! ) . _ .  
Turbulence which is initially axisymmetric will remain so when subjected to axi- 

symmetric distortion, and hence only the first two terms in the harmonic expansion of 
& will contribute to post-distortion energy. However each of these terms is itself in 
general a linear combination of all the initial coefficients F2m and G2m, so that a finite 
number of them is not sufficient to determine the energy ratio. 

3.2. The energy ratios 

The ratio of each component energy after distortion to its value before is 

pi  = j’$;i(x) DXIJ +ii(k) ~ k .  
Integrating (3.1), and noting that in isotropic turbulence F = Fo and G = 0, we can 
separate the isotropic part p: of pi and write 

(3.4) 

where py = 3Jo/4e:, pt = 3J,*/4e%, (3.5) 

R-I 
pi = ps- 7 A p 1 ,  p2 = p!--(R-- 1)Ap2, 
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The quantities J a n d j  are functions of (el, e,, e3) defined by the following integrals: 
1. 

e;2Jk(e l ,  e,, e3) = eya J2m(e3, el, e2), 
1 

0 
j 2m = J” ( B 2 B 3 ) - t ( B i + B f ) - 2 $  ( ~ - P Y P % ( o ~ E ,  

1 

0 
jgm = f [e fe ;  ~z + (et - e ~ )  PI ( e ~  et Bz)-1(1 - 5 2 )  p,rn(n 

B, = c2/e; + ( 1 - <,)lei, C, = (52/e; e t )  (2ei - e2, + e i  6 2 ) .  where 

It is possible to evaluate the J,,, J~,,jZm andjg, in terms of elliptic integrals (Sreeni- 
vasan 1973, 1974), but the resulting expressions are not very useful, particularly for 
computation, and so will not be quoted here. We note however that each integral has 
the form 

~ : Q ( E )  pZrn(6) 

where Q consists of terms even in 5. As m becomes large PZm([) oscillates rapidly, so we 
may expect that the integrals for large m are small in comparison with Jo. In fact, the 
j, are generally very small, so that the contribution of G,, to the longitudinal energy 
ratio ,ul as given by (3.6) will be correspondingly small. 

4. The simpler ansatzes 
Useful results about the behaviour of axisymmetric turbulence can be obtained only 

if some reasonable hypotheses about the coefficients F,, and G ,  in (2.4) can be made. 
One way would be to truncate the series (2.4) at some suitable value of m. A more 
fruitful approach is to postulate that some pair of the five functions A,  depend only on 
k and not on k, (recall that any three of them can be eliminated by symmetry and con- 
tinuity). However, the requirement that & should be even in k, rules out such & 

postulate for A ,  = A,. Of the remaining three functions we can choose two in three 
possible ways: each combination defines a possible simple ansatz for the spectral 
tensor. We examine these in turn. 

4.1, Ansatzes I and I A 
Ansatz I is defined by taking A ,  and A ,  to depend only on k ;  from (2.2) it  follows 
(a superscript I indicating the ansatz) that 

F;, = 0 = G;, for m = 1,2,  ..., (4.1) 

(4.2) 

and from (2.3) and (2.4) that 

I &l(W = (k2 - k f )  Fo(k), 
$i,(k) = (k2 - k:) Fo(k) + (k2 - kf - k:) Go(k). 

Thus the angular dependence of $,, is like sin2 8, exactly as in isotropic turbulence. 
If the one-dimensional spectra 
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were known, say from measurement, it  would in principle be possible to infer Fo and Go; 
for, by using (4 .2 )  in (4 .3 )  it can be shown that 

Unfortunately use of these formulae calls for the very difficult third-order differentia- 
tion of numerical data. 

From (2 .6 )  it follows that 
@/Pi = - 2 ( R  - 1)/R. (4 .5 )  

This suggests consideration of an even simpler ansatz, which we shall call I A ,  in which 

Gi”(k) = (G$/Pi)@”(k) = - 2 ( R -  l ) P i ” ( k ) / R ;  (4 .6 )  

the spectral tensor in this case is completely determined by the function Fo(k) and the 
parameter R. 

Ansatz I A is perhaps the simplest possible form of non-isotropic turbulence. It has 
many interesting properties: the spectral tensor in the final period of decay of axi- 
symmetric turbulence (studied by Chandrasekhar 1950) conforms to I A  (see appen- 
dix). The one-dimensional spectra $n and 4, are related to each other by the equation 

2 $ 2 ( k l )  = ( 2  - R )  $:”-. Rk, a&”/ak,, (4 .7)  

which can be derived using (4 .3 )  and (4 .6 ) .  If we put R = 1 we recover the well-known 
relation for isotropic turbulence (Batchelor 1953, p. 50). 

There is some experimental evidence to suggest that ansatz I A  is quite realistic: 
among the many sets of data we have analysed, we shall cite three here to demonstrate 
the kind of success achieved. Turbulence at  the centre-line ofa pipe should be axisym- 
metric (although not homogeneous) ; from measured #l(kJ one can therefore predict 
$,(k,) using ( 4 . 7 ) t  and compare it with experiment. For the data of Lawn (1971),  whose 
values for R range from 1.6 to 2.0, the computed $iA exhibits the kind of low wave- 
number bump that is observed; but while it is certainly much closer to the measured 
spectrum than that based on isotropic theory (figure 2 ) ,  there is some quantitative 
discrepancy a t  low wavenumbers. At higher wavenumbers, where turbulence is more 
nearly isotropic, there is no great difference between isotropic and axisymmetric 
theories. 

The measurements of Laufer ( 1954) show excellent agreement with the predicted 
$6” if R is taken as 1.6; but Laufer’s own value of R is about 1.2, which is unusually 
low compared with the results of recent measurements like those of Lawn cited above 
and those of Perry & Abell (1975),  who find R 21 1.6. 

The axisymmetric theory appears to work well in some applications where it would 
at first seem less justifiable. For example, the predicted spectrum of u2 shows excellent 
agreement with the measurements of Comte-Bellot (1963) at the centre-line of a 

t The differentiation involved in computing #= was carried out here by fitting a four-point 
Lagrangian formula to a smooth curve through the experimental points for the u1 spectra. 
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FIGURE 2. Power spectral density of radial velocity component at centre-line of pipe of radius a. 
Experimental data from Lawn (1971) at a pipe Reynolds number of 9 x 104. Theory: ---, iso- 
tropic; -- , ansatz IA, R = 1.6; - , msatz IA,  R = 2.0. 

channel and those of Klebanoff (1954) in a constant-pressure boundary layer (see 
figure 3). In  these calculations we have taken for R the average value 

where u1 denotes the streamwise component, u2 is normal to the surface and ug is 
transverse. Similarly good agreement is also found with the data of Champagne, 
Harris & Corrsin (1970) for nearly homogeneous shear flow. 

R = 3((uDl(u3 + (U"l>l(UW 

4.2. AnsatxII 

We put A ,  = A2(k only) and A ,  = A,(k only). Examination of the requirement of 
continuity on (2.1) and comparison with (2.4) show that this implies 

Go = #F2, F2m+2 = 0 = G,, m = 1,2, ... . 
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FIGURE 3. u, spectrum calculated from measured ul spectrum, according to ansatz I A  (solid 
curve) and isotropic relation (dashed curve). Measurements on the centre-line of channel flow 
(average R 1.84), Comte-Bellot (1963): 0, u2 spectrum; 0 ,  us spectrum. Measurements at 
0.8 boundary-layer thickness from wall in constant-pressure turbulent boundary layer ( R  1.6), 
Klebanoff (1954) : A, u2 spectrum. 

Thus ansatz I1 contains one more harmonic than ansatz I, and is a special case of the 
two-term expansion of (2.4). For this ansatz 

@(k) = (k2  - k;)'AZ + (k  - k2,) A,, (4.8~) 

$&(k) = k2kiA2 + (k2  - k i )  A,, (4.8b) 

with A ,  = 3F2/2k2,, A ,  = (Fo- +F2) + (3k;/2k2) F2. 

Corresponding to (4.4) we now have the more complicated inversion relations 

and 
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4.3. Ansatz I11 
Here A ,  = A,(k only) and A ,  = A,(k only). This implies 

(4.94 

$kG(k) = A ,  k$+ A,. (4.9b) 

If A,  k2 = -A, ,  these equations reduce exactly to isotropic forms. If A,k2 =I= -A3,  
&I(k) has an algebraic singularity at k, = 0, which is physically undesirable as it 
implies that the longitudinal correlation does not die away at  infinity. One can of 
course avoid the singularity by choosing A ,  k;2 and A ,  kT2 as functions only of k,  but 
then it turns out that isotropic results are not recoverable merely by putting R = 1, 
as an additional dependence of A ,  and A ,  on k: then still remainsin the spectral tensor. 

For these reasons, we pay greater attention to ansatzes I and 11, but some incidental 
remarks will be made on ansatz 111 in connexion with the energy ratios in the normal 
direction. 

We may finally note that the present ansatzes are quite different from the proposals 
made recently by Herring (1974) in a somewhat different context. Herring used an 
expansion in spherical harmonics for functions q5l and d2 related to the functions F and 
G of this paper as follows: 

(4.10) 

He then considered the special case in which $1 and $2 are independent of k,. Equations 
(4.10) show that this cannot be our ansatz I; from the easily derived relations 

4' = k2F + ( k 2 -  k:) G ,  $2 = k2T. 

A ,  = ($2-$1)k2/ (k2-k2 , ) ,  A3 = $', 
obtained from the relations among the A,  (implied by continuity), it  follows that 
Herring's proposal is not our ansatz I1 either. 

5. Results for the energy ratios 

From (3.6) and (4.1), 
5.1. AnsatzI 

where Api and A& depend only on the geometry of the distortion and are, in particular, 
independent of R. It is therefore sufficient to present information on Ap; and p! to 
enable calculation of energy ratios according to this ansatz. For completeness, we first 
give, in figure 4, vs. el and e2. Figures 5 and 6 give Ap: and Api, respectively, plotted 
against el and e ,  in a convenient manner. (By symmetry, figure 6 also represents the 
variation of Ap; with el azld e, .)  

From figure 5 it is clear that the correction term forp, due to departure from isotropy 
is negligible for distortions that are two-dimensional or nearly so (i.e. e2 or e3 1). 
Similarly, figure 6 shows that for a constant-area distortion of the kind studied by 
Townsend (1954), where el = 1, the correction term is nearly independent of e2 when 
e2 > 1. A more general result is that for el 2 1 (in practice, contractions or constant- 
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CI 

FIGURE 4. Longitudinal energy ratio calculated from the Batchelor-Proudman theory for 
initially isotropic turbulence, t - ~  a function of the extension ratios. Other component energy 
ratios can be obtained by symmetry. 

0.01 II- 
0. I I .o 

el 

10 

FIQURE 5. Correction term for the 1ongitudina.l energy ratio according to anzatz I. 
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FIGURE 6. Correction term for the transverse energy ratio according to ansatz I. ---, two- 
dimensional distortion (e,e, = 1 = eJ. 

area distortions) Api is approximately equal to &el and is almost independent of e,; for 
el c 1 (diffusers) pi becomes increasingly sensitive to squashing with increasing el: 
thus p$ differs considerably from p8 for large e3. Similar considerations hold for and 
Api. Further, for a two-dimensional distortion (e3 = l), figure 6 shows that the 
correction term is negligible, particularly if e ,  > 1. 

For an axisymmetric strain field e2 = e3 = e l* ,  we see from (5.1) that Api = 0;  we 
have in fact 

For large el, these reduce to 
(5.2) 

pi = = (3/4e3 (ln4e;- l),  pf = e l ( l  - $R). (5.3) 

Pi = P?, Pln = P i -  (R- 1) (e1-p:). 

For large two-dimensional contractions with e,  = 1 and e ,  = e i l g  1, 

= pWp + 0(eT2) (5.4) 

(5.5) 

and 
p i  = R& - el(R - 1 ) [ 1 - &( - l)R(e2, - 1) e i4  + O(e i@)]  

= el( 1 - IR) + O(e;l). 

These results indicate that for large contractions, as far as the correction terms are 
concerned, 

(i) there is no difference between axisymmetric and plane distortion; 
(ii) there is no difference between axisymmetric and isotropic turbulence as far as 

(iii) if the initial transverse component energy is less than the longitudinal, its 
the longitudinal energy component is concerned; 

increase during distortion is over-estimated by isotropic theory. 



0. I 10 

FIGURE 7. Correction term for the longitudinal energy ratio according to 
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ansatz 11. 

0 

- 
-N a" -2  

- 4  

- 6  

0. I 1 10 
e2 

FIGURE 8. Correction term for the transverse energy ratio according to ansatz 11. --, two- 
dimensional distortion (e,e, = 1 = es) 

The results here are 
5.2. Ansatz I1 

( 5 . 6 ~ )  

(5 .6b )  
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FIUURE 9. Comparison of (a) predicted longitudinal energy ratios and (b) predicted lateral energy 
ratios in axisymmetric distortion. -, ansatz I ;  ---, ansatz II; Reynolds t Tucker’s 
simple stratagem. 

a similar result holds for A,@. Expressions (5.6) are plotted in figures 7 and 8. Com- 
paring these with figures 5 and 6 we see that the two ansatzes give qualitatively similar 
results for either the longitudinal or the transverse energy component when the 
turbulence is being stretched in the corresponding direction. In the limiting case of a 
large contraction, we get by straightforward algebra 

pi1 = -(l---)ln4e;-- 3 8R-1  1-4- R-1  
4ef 7 R ::( R )’ 

pi1 = pi[  1 - +(R - l)] = &el(8 - R). 
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IfR > 1, these results show that the reduction in longitudinal energy is greater, and the 
increase in transverse energy less, than in isotropic turbulence. Once again, there is no 
difference between large axisymmetric and large plane contractions. 

5.3. Ansatz I11 
As noted in $4.3, this ansatz has a singularity at k, = 0 except in a special isotropic 
case. It may be shown (Sreenivasan 1974) that as a consequence the energy ratio 
exhibits singular behaviour at R = 1. Thus, while the correct isotropic value is re- 
covered at R = 1, the longitudinal energy ratio p1 is eT2, independently of R, for all 
R $: 1. Although this simple result for p1 is reminiscent of that obtained by Prandtl, the 
singularity at  R = 1 does not inspire confidence and hence this ansatz will not be 
considered further here. 

5.4. Comparison with the Reynolds-Tucker method 
The basis of this method has already been touched upon in $1. Reasonable results may 
be expected if, as Reynolds & Tucker have speculated, the component energy ratios 
are not sensitive to the details of the initial spectra. The results of $55.1 and 5.2 show 
that this cannot in fact be true. Although qualitatively similar, the results of ansatzes 
I and I1 show a dependence on the initial spectral form. 

Figure 9 (a) shows a comparison of the longitudinal energy ratios ,al calculated for 
el = 2, 3 and 8. This illustrates that while departures from isotropic results are small, 
according to any of these methods, in the vicinity of R = 1 ansatz I1 and the Reynolds- 
Tucker method indeed show opposing trends ! Ansatz I lies almost midway between the 
two. For the lateral energy ratios pn (figure gb), the two present ansatzes and the 
Reynolds-Tucker method depart from isotropic results in the same direction. Here 
again, the Reynolds-Tucker method is closer to ansatz I than to ansatz 11. This 
suggests a somewhat systematic dependence of the component energy ratio on the form 
of the initial spectra. 

5.5. Changes in velocity products 

It has been observed (e.g. Launder 1964) that, in the outer region of a highly acceler- 
ated turbulent boundary layer, the Reynolds shear stress is nearly frozen along a given 
streamline. Narasimha & Sreenivasan ( 1973) suggested that the major mechanism 
responsible for the phenomenon could be the rapid distortion of turbulence caused by 
sudden mean flow acceleration. A preliminary account given by Sreenivasan & 
Narasimha (1974) supports this conclusion. Narasimha & Prabhu (l972), who observed 
similar features in a distorted wake, also attributed this to the same phenomenon. It is 
therefore of some interest to examine the changes in the product (u~)~(u~)~, which is 
proportional, through a correlation coefficient, to the Reynolds shear stress. It is of 
particular significance because, in a sufficiently accelerated shear flow, the correlation 
coefficient itself does not vary greatly along a given streamline not too close to the wall. 
For example, data of Blackwelder & Kovasznay (1972) show that, on a streamline 
roughly half-way across the boundary layer, the correlation coefficient increases by no 
more than about 30 yo over a distance of about 25 boundary-layer thicknesses. Similar 
corroborating results were obtained by Ramjee et aE. (1972) in an accelerated two- 
dimensional channel flow. 
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FIGURE 10. Variation with extension ratio e, of the product (u;)*(u$ in homogeneous turbu- 
lence subjected to a two-dimensional distortion at different values of the initial anisotropy 
factor R. 

Figure 10 shows the results for a two-dimensional distortion using R = 1.0, 1-2 and 
1.69 in ansatz I. It is seen that over the range 0.5 5 el 5 5 the velocity product 
(uf)9(ug)9 changes little, lending support to the suggested explanation of stress- 
freezing. Note that, in applying the result to a shear layer with the mainstream 
U,(x) along the x axis, we get from (3.3) 

6.  Comparison with experiment 
The main conclusion from the above calculations is that, if departure from isotropy 

is not large, the component energy ratios can be expressed as the sum of their value 
given by isotropic theory and certain corrections. In  particular, in a large contraction 
the longitudinal energy (u!) decreases appreciably downstream whereas the trans- 
verse component (ut) increases, although (in the case where (us) < {uf) initially) this 
increase is less rapid than if the turbulence had been isotropic. 

There is some experimental evidence to support these conclusions. In  their experi- 
ments on axisymmetric contraction of initially axisymmetric turbulence (R N 3), 
Klein & Ramjee (1973) observed first a sharp drop in the longitudinal energy followed 
by a considerable increase; they attributed this behaviour to the strong initial depart- 
ure from isotropy. This conclusion is however not supported by the present results, 
which show no strong change in qualitative behaviour even for R = 3; also, similar 
non-monotonic behaviour of (uf) had been observed earlier by Uberoi (1956) at 
lower values of R and was attributed by him to the intercomponent exchange of energy 
promoted by pressure fluctuations - an explanation that seems more plausible. In  
many of Klein & Ramjee’s experiments, (uf) drops to half its initial value in a very 
short distance while (u;) has yet hardly changed: this is likely to bring intercomponent 
energy transfer rapidly into play. The measured transverse energy ratios are compared 
in figure 11 with the predictions of ansatzes I and 11. For both the Thwaites and the 
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FIGURE 1 1. Comparison of measured energy ratios in strongly non-isotropic axisymmetric 
turbulence (R = 3) with theory. Experimental data from Klein & Ramjee (1973) for contracting 
ducts with (a) a Thwaites contour and (a) a Batchelor-Shaw contour. 0, LID = 1; V, 1.5; 
A, 2.0; 0, 3.0. Theory: ---, isotropic; -, ansatz I; .-.- , ansatz 11. 

Batchelor-Shaw contours of contraction used by Klein & Ramjee, the experimental 
results lie between the predictions of the two ansatzes, but seem somewhat closer to 
those of ansatz 11. 

In the experiments of Tucker & Reynolds (1968) the distortion was not sufficiently 
rapid for a direct comparison with the theory; a correction for viscous decay is neces- 
sary. Applying this following Tucker & Reynolds, we get for ansatz I the results shown 
in figure 12; the axisymmetric theory is clearly closer to the measurements. Results for 
ansatz I1 show no significant differences. 

In the experiments reported by Uberoi (1956), Uberoi & Wallis (1966) and Comte- 
Bellot & Corrsin (1966), isotropic theory applied to each component shows reasonable 
agreement ; the present theory improves the agreement but the differences are 
relatively small. 

7. Conclusions 
A complete specification of the spectral tensor in axisymmetric turbulence needs in 

general two scalar functions of two scalar variables. However, there are certain special 
cases in which it is sufficient to give two functions of a single variable (ansatzes I and 
11) or even one function ofa single variable with an additional parameter (ansatz I A ) .  
In all thes>e special cases, the turbulent energy after an arbitrary three-dimensional 
distortion can be worked out in closed form, just as in isotropic turbulence. The results 
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FIGURE 12. Comparison of the calculated energy ratios with measurements (points, data of 
Tucker & Reynolds 1968) for constant-area distortion of axisymmetric turbulence. Theory : 
-, ansatz I; ---, isotropic. Note the small difference between the isotropic and axisymmetric 
theories for the variation of the total energy. 

from the different ansatzes are in broad qualitative agreement with each other, as well 
as with those of Reynolds & Tucker's hypothetical-strain method: thus in large plane 
or axisymmetric contractions the decrease in longitudinal energy is nearly the same as 
in isotropic turbulence, but the transverse energy, if less than the longitudinal in the 
initial state, does not increase by as much as the isotropic theory predicts. Nevertheless, 
there are significant qualitative differences; e.g. the predictions of ansatz I1 and the 
hypothetical-strain method differ with regard to the sign of the departure of pl from 
isotropic theory. The transverse energy ratio predicted by the hypothetical-strain 
method is about 25 % more than that predicted by ansatz 11, but agrees closely with 
ansatz I. In any case, severe distortions can cause energy changes very different from 
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those predicted by isotropic theory; but for small departures from isotropy and 
moderate distortions, an ad hoc application of isotropic theory to each component 
should not cause serious errors. 

Unfortunately, it is not possible to make a categorical recommendation about which 
of the different ansatzes proposed here is the most appropriate; indeed it is likely that 
each of them has its special place. Nevertheless, ansatz I A is the simplest possible form 
of non-isotropic turbulence, and ought therefore to be chosen if possible. On the other 
hand, ansatz I1 appears to be rather more successful, especially in cases where the 
departure from isotropy is large. 

Appendix 
It was shown bychandrasekhar (1950) that, for turbulence with weak inertia effects, 

the functions (say Q1 and Qa) which determine the second-order tensor of the type 
(2.1 a) for correlations approach, in the limit t + co, a state independent of the direction 
cosine, say rl, of the separation-distance vector r. He showed then that the correlation 
tensor has components given by 

where Q1, Q2 and a are functions only of time. 
Taking Fourier transforms of (A 1) and (A 2), one gets 

#~ii(k) = - (QiPa) (n/a)t (ha - k;) exp ( - k2/4a)  (A 3) 
and 

#2@) + #33(k) = Qi(/2a) (n/a)' (k2 + exp ( - k2/4a)  

- (Q2/2a) (n/a)' (k2 - kf) exp ( - k2/4a) .  (A 4) 

On comparing (A 3) and (A 4) with (4.2) it is clear that this form is consistent with 
ansatz I; it further follows that 

This case in which Fo/Go is a constant independent of k is precisely what we have called 
ansatz I A  [see (4.6)]. 
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